EDMA seminars‎ > ‎

2011/2012 Seminar Series


M.C. Ricardo Meraz Sánchez 
(Universidad Nacional Autónoma de México)

Estado de la pesquería de camarón café, Farfantepenaeus californiensis (Holmes, 1900) en el suroeste del golfo de California evaluando el error en el proceso de evaluación.

Wed, 20th June - 20/06/2012
Seminari de Matemàtica Aplicada, 15:00

Resum/ Abstract:
El camarón café es la especie de camarón mas abundante en el Pacifico mexicano. En el suroeste del golfo de california existe la flota camaronera más grande de México, con más de 700 barcos que capturan anualmente cerca de 7,000 toneladas. El estado de la pesquería de camarón café fue evaluado utilizando datos comerciales de captura y esfuerzo del suroeste del golfo de California de 1995-2011. Un modelo dinámico de biomasa de Schaefer y técnicas de re-muestreos fueron utilizadas para analizar la captura por unidad de esfuerzo de la pesquería. Dos hipótesis en el proceso de evaluación fueron examinada: Error de observación y de proceso. El estimador de error de observación tuvo un mejor ajuste a los datos que el estimador de error de proceso. Este resultado puede deberse a que en actualmente es imposible discriminar el esfuerzo de pesca para las diferentes especies de camarón, cambios en el poder de pesca por la mejora de las embarcaciones y el sub-reporte que pudiera haber de las capturas. La pesquería de camarón café en el suroeste del golfo de california presento síntomas de sobrexplotación. Sin embargo, las capturas reportadas en los últimos años pareciera que el recurso presenta una rápida recuperación de la población.



Pau Roldán 
(Universitat Politècnica de Catalunya)

Difusió al llarg de resonàncies al problema restringit de tres cossos.

Wed, 25th April - 25/04/2012
Seminari de Matemàtica Aplicada, 15:00

Resum/ Abstract:
És ben conegut pels astrònoms que, al Cinturó d'Asteroides situat entre les òrbites de Mart i Júpiter, la distribució dels asteroides presenta els nomenats "forats de Kirkwood" (http://en.wikipedia.org/wiki/Kirkwood_gap). Aquests forats coincideixen exactament amb les ressonàncies orbitals entre Asteroide i Júpiter. Nosaltres demostrem l'existència d'òrbites de difusió per a l'Asteroide que mostren un canvi dràstic en la seva excentricitat, mentre que el seu semieix major es manté casi constant. Per tant, el nostre mecanisme dóna una justificació rigorosa dels forats de Kirkwood. Aquest treball és una col·laboració amb el Jacques Féjoz (Université Paris-Dauphine and Observatoire de Paris), el Marcel Guàrdia (University of Maryland at College Park), i el Vadim Kaloshin (University of Maryland at College Park). 
Per a més informació, veure el "preprint"http://arxiv.org/abs/1109.2892



Víctor Mañosa 
(Universitat Politècnica de Catalunya)

Birational maps on elliptic curves: blending dynamics and algebraic geometry.

Wed, 28th March - 28/03/2012
Seminari de Matemàtica Aplicada, 15:00

Resum/ Abstract:
Birational planar maps possessing a rational first integral, preserve a foliation of the plane given by algebraic curves. We will review some results which state that the most typical situation is that this algebraic foliation will be given either by conics and straight lines or by elliptic curves. In the last case we will see some nice results showing that the group structure of the elliptic foliation characterizes the dynamics of any birational map preserving it. All these results are classical and well-known in algebraic geometry, see [2] and [3]. This will be the main core of the talk, and it is aimed to be expository and addressed to a general audience. To exemplify the above stuff we will see how it works on the Lyness map F(x,y)=(y,(a+y)/x). This map preserves an algebraic foliation given by curves which are, generically, elliptic. We will see how on each of these elliptic curves the map is an affine action in terms of the group structure of the curve. In fact, we will see that the Lyness’ one is a universal family of elliptic curves. Finally we will review the group structure of rational elliptic curves and its relation with the existence of rational periodic orbits; we will do a brief digression on numerical experiments; and will give a negative answer to a conjecture of Zeeman (and an open problem of Bastien an Rogalski) about the existence of rational 9-periodic orbits of the Lyness map, see [1,4] and [5]. 

[1] G. Bastien, M. Rogalski, Global behavior of the solutions of Lyness' difference equation u_{n+2}u_n=u_{n+1}+a, J. Difference Equations and Appl. 10 (2004), 977-1003. 
[2] J. Duistermaat. Discrete Integrable Systems. QRT Maps and Elliptic Surfaces. Springer-Verlag, 2010. 
[3] D. Jogia. J.A.G. Roberts, F. Vivaldi, An algebraic geometric approach to integrable maps of the plane. Journal of Physics A, 39 (2006), 1133--1149. 
[4] A. Gasull, V. Mañosa, X. Xarles. Rational Periodic Sequences for the Lyness Equation. Discrete and Continuous Dynamical Systems -series A. 32 (2012), 587-604. 
[5] E.C. Zeeman. Geometric unfolding of a difference equation, Preprint Hertford College, Oxford (1996). Unpublished.



Xavier Jarque 
(Universitat de Barcelona)

Sierpinski Julia sets for quadratic rational maps.

Wed, 29th February - 29/02/2012
Seminari de Matemàtica Aplicada, 15:00

Resum/ Abstract:
Sierpinski (1882-1969) discovered, among many other topologically interesting sets, the Sierpisnki carpet. The set is obtained recursively in the following manner. Start with a square of length 1. Remove a central square of length 1/3. The figure can now be naturally divided in 8 squares of length 1/3. Remove the central square of length 1/9 from each one of them. Do the same procedure up to the limit. The set we get is called the Sierpinski carpet. Why is so important? It was proved by Sierpinski that it is a universal plane continuum in the sense that it contains a homeomorphic copy of any planar, one-dimensional, compact and connected set. . 
Later, in 1953, Whyburn showed that any planar set that is compact, connected, locally connected, nowhere dense (does not contain open sets), and has the property that any two complementary domains are bounded by disjoint simple closes curves is homeomorphic to the Sierpinski carpet. Sets with this property are known as Sierpinski curves.
The connection of all these previous topological results has a strong relation with complex dynamics because the Julia set of a rational map is always compact and nowhere dense (unless is the whole sphere). Sufficient (and necessary) conditions to get the connectivity and local connectivity 
are known. So, a natural question is to find out when you can guarantee that the Julia set of a rational map is a Sierpinski curve. 
I wil present some examples given in the literature and some new results we have found in the family of quadratic rational maps.



Óscar Angulo
(Universitat de Valladolid)

Estudio numérico y analítico de modelos asociados a la hematopoiesis.

Tues, 7th February - 07/02/2012
Seminari de Matemàtica Aplicada, 15:00

Resum/ Abstract:
La hematopoiesis es el proceso por el que se producen y regulan las distintas poblaciones de células sanguíneas. Está basado en una sucesión de mecanismos complejos de diferenciación de las células madre. Estas diferentes diferenciaciones, que ocurren en la médula ósea, están principalmente reguladas por la población total de las células hematopoieticas. Este proceso exhibe a menudo anormalidades in la producción de células sanguíneas, que causan las denominadas enfermedades hematológicas. Una enfermedad hematológica severa es la Leucemia Myelogeneous Crónica (CML), un cáncer de los glóbulos blancos. En algunos casos, ésta exhibe oscilaciones periódicas en las contabilidades de todas las células sanguíneas. Presentamos un modelo de la dinámica de la hematopoiesis. Analizamos la estabilidad asintótica de los equilibrios y numéricamente ilustramos nuestros resultados y obtenemos la dinámica del modelo que relacionamos con las observaciones de la CML periódica.



Jordi Ripoll
(Universitat de Girona)

Graph Spectra with applications to network models.

Wed, 1st February - 01/02/2012
Seminari de Matemàtica Aplicada, 15:00

Resum/ Abstract:
In this talk we will review some results about Spectra for networks, i.e. basically the set of eigenvalues of the adjacency matrix of the network. We will apply these results to the computation of the basic reproduction number R0 for epidemic network models through the next generation matrix.  



Joan Saldaña
(Universitat de Girona)

Probability generating functions and epidemics in networks.

Wed, 23rd November - 23/11/2011 (1st part), Wed, 14th December - 14/12/2011
Seminari de Matemàtica Aplicada, 15:00

Resum/ Abstract:
One of the techniques used to analyze processes on networks are the so-called probability generating functions (PGF). One of the recent applications of this technique is the study of epidemics in networks where nodes (individuals) are created (newborns)and deleted (deaths). In the talk we present on how PGF are used in the analysis of simple epidemic models on networks and discuss their application to solve open problems about epidemic models defined on dynamic networks.



David Juher
(Universitat de Girona)

The minimum tree for a given zero-entropy period.

Wed, 26th October - 26/10/2011
Seminari de Matemàtica Aplicada, 15:00

Resum/ Abstract:
In this talk, we prove a formula which computes, for any given natural number n, the minimum number of endopoints of a tree so that there exists a zero-entropy continuous map defined on it having a period n orbit.